
Master of Computer Applications
(MCA)

Object Oriented Programming
with C++ and JAVA Lab

(DMCACO107P24)

Self-Learning Material
(SEM 1)

Jaipur National University
Centre for Distance and Online Education
__

Established by Government of Rajasthan
Approved by UGC under Sec 2(f) of UGC ACT 1956

&
NAAC A+ Accredited

(OMCACO107P24)

Jaipur National University Course Code: DMCACO107P24
 Object Oriented Programming with

C++ and JAVA Lab

TABLE OF CONTENTS

Course Introduction i

Experiment 1

Implementing a Class and Object
1

Experiment 2

Constructors and Destructors
1

Experiment 3

Implementing Inheritance
2

Experiment 4

Function Overloading 2

Experiment 5

Operator Overloading
2

Experiment 6

Inheritance with Function Overriding
3

Experiment 7

Implementing a Copy Constructor
3

Experiment 8

Implementing Dynamic Memory Allocation
3

Experiment 9

Friend Function
4

Experiment 10 4

Template Class

Experiment 11

Implementing a Linked List 5

Experiment 12 5

Implementing a Stack Using Class

Experiment 13

Implementing a Queue Using Class
5

Experiment 14

Implementing Polymorphism
6

OMCACO107P24

Experiment 15

Implementing Abstract Classes
6

Experiment 16

Implementing a Template Function 6

Experiment 17

Exception Handling
7

Experiment 18

Implementing Copy Constructor and Assignment Operator
7

Experiment 19

Implementing Static Members
8

Experiment 20

File Handling
8

Experiment 21

Algorithm
8

Experiment 22 10

Algorithm

Experiment 23 11

Algorithm

Experiment 24 12

Algorithm

Experiment 25

Algorithm 13

Experiment 26

Algorithm
14

Experiment 27

Algorithm
14

Experiment 28

Algorithm
18

EXPERT COMMITTEE

Prof. Sunil Gupta

(Department of Computer and Systems Sciences, JNU Jaipur)

Dr. Deepak Shekhawat

(Department of Computer and Systems Sciences, JNU Jaipur)

Dr. Shalini Rajawat

(Department of Computer and Systems Sciences, JNU Jaipur)

COURSE COORDINATOR

Ms. Heena Shrimali

(Department of Computer and Systems Sciences, JNU Jaipur)

UNIT PREPARATION

Unit Writer(s) Assisting &

Proofreading
Unit Editor

Ms. Heena Shrimal

(Department of

Computer and

Systems Sciences,

JNU Jaipur)

Mr. Hitendra Agarwal

(Department of

Computer and

Systems Sciences,

JNU Jaipur)

Mr. Shish Dubey

(Department of

Computer and

Systems Sciences,

JNU Jaipur)

Secretarial Assistance

Mr. Mukesh Sharma

COURSE INTRODUCTION

"Object-oriented programming is an exceptionally bad idea which could only have originated

in California."

- Edsger W. Dijkstra

The course starts with an overview of the object-oriented paradigm and its elements, discussing

the advantages and disadvantages of the OO methodology. Students will delve into C++

fundamentals, including data types, operators, expressions, and control flow. Essential topics

covered include arrays, strings, pointers, and functions, along with the creation and management

of classes and objects. The course also addresses constructors and destructors, operator

overloading, inheritance, virtual functions, and polymorphism to provide a comprehensive

understanding of OOP principles in C++. File handling in C++ is another significant aspect of

this course. Students will learn about console streams and console stream classes, including

formatted and unformatted console I/O operations and manipulators. The course covers file

streams, classes, file modes, file pointers, and file manipulations, as well as file input and output

operations. Additionally, students will learn about exception handling in C++, enabling them to

write robust and error-resistant programs.

The course also offers an introduction to Java, a versatile and widely-used programming

language. Students will learn about Java's data types, variables, and arrays, as well as operators

and control statements. The course covers the creation and management of classes, objects, and

methods, along with key OOP concepts such as inheritance, packages, and interfaces. Exception

handling, multithreaded programming, strings, and input/output operations are also discussed,

providing students with the skills needed to develop efficient Java applications.

Multithreading is a powerful concept that allows for the concurrent execution of code. This

course introduces students to the differences between non-threaded and threaded applications,

focusing on the creation and management of threads. Students will learn to implement the

Runnable interface, gaining a practical understanding of multithreading and its applications in

real-world scenarios.

Course Outcomes:

At the completion of the course, a student will be able to:

1. Acquire profound knowledge of object oriented programming.

2. Demonstrate the difference between the solutions offered by traditional imperative

problem solving method and object-oriented method by class inheritance, data

encapsulation, and polymorphism as fundamental building blocks to generate reusable

code.

3. Understand and implement error handling and file handling routines.

4. Explain the Internet Programming, using Java Applets.

5. Create and design a full set of UI widgets and other components, including windows,

menus, buttons, checkboxes, text fields, scrollbars and scrolling lists, using Abstract

Windowing Toolkit (AWT).

6. Describe to access database through Java programs, using Java Database Connectivity

(JDBC)

7. Develop Mini Projects using constructs of OOPs and Java.

Acknowledgements:

The content we have utilized is solely educational in nature. The copyright proprietors of the

materials reproduced in this book have been tracked down as much as possible. The editors

apologize for any violation that may have happened, and they will be happy to rectify any such

material in later versions of this book.

1

OOPs Using C++ Lab

Assignment 1: Implementing a Class and Object

Program Statement: Write a C++ program to make a class Rectangle with attributes length

and width. Include member functions to:

1. Set the dimensions of the rectangle.

2. Compute and return the area of the rectangle.

3. Calculate and go back the perimeter of the rectangle.

4. Display the dimensions, area, and perimeter.

Solution Description: This program will help students understand how to define a class with

private attributes and public member functions. The Rectangle class will encapsulate the

properties of a rectangle and provide methods to manipulate and access these properties. The

program will include a constructor to initialize the rectangle's dimensions, methods to

calculate the area and perimeter, and a display function to output the rectangle's details. This

assignment reinforces concepts of encapsulation, data hiding, and basic object manipulation

in C++.

Assignment 2: Constructors and Destructors

Program Statement: Create a class Complex to represent complex numbers. Implement:

1. A default constructor to initialize the real and imaginary parts to zero.

2. A “parameterized constructor” to initialize the real and imaginary parts to given

values.

3. A “destructor” to display a message when an object is destroyed.

4. A “member function” to display the complex number in the form a + bi.

Solution Description: This assignment emphasizes the use of constructors and destructors in

a class. The Complex class will have attributes for the real and imaginary parts. Constructors

will initialize these attributes, either to default values or to user-provided values. The

destructor will be used to demonstrate when an object goes out of scope and is destroyed. The

display function will format and print the complex number. This task helps in understanding

object lifecycle management and resource cleanup in C++.

2

Assignment 3: Implementing Inheritance

Program Statement: Create a “base class” Shape with a pure “virtual function” area().

Derive two classes Circle and Square from Shape. Implement:

1. The constructor for each derived class.

2. The area() function to calculate and return the area for each shape.

3. A function to display the area.

Solution Description: This assignment introduces the concept of inheritance and

polymorphism. The Shape class serves as an “abstract base class” with a pure “virtual

function” area(). The “derived classes” Circle and Square implement the area() function to

calculate the area specific to each shape. The constructors initialize the radius and side length,

respectively. By using base class pointers to call the area() function, students will understand

dynamic binding and polymorphism in C++.

Assignment 4: Function Overloading

Program Statement: Write a C++ program to demonstrate function overloading by creating

a class Math with multiple add() functions to handle:

1. Addition of two integers.

2. Addition of two floating-point numbers.

3. Addition of three integers.

Solution Description: “Function overloading” allows multiple functions with the same name

but different parameters. The Math class will have overloaded add() functions to handle

different types and numbers of arguments. This program will show how the same function

name can be used to do different operations based on the input parameters. This assignment

helps in understanding the concept of function overloading and its applications in C++.

Assignment 5: Operator Overloading

Program Statement: Create a class Complex to represent complex numbers. Overload the +

operator to add two complex numbers. The program should:

1. Include a constructor to initialize the real and imaginary parts.

2. Overload the + operator.

3. Display the result of the addition.

Solution Description: “Operator overloading” allow operators to be redefined for user-

defined types. The Complex class will include a constructor for initialization and an

3

overloaded + operator to add two Complex objects. The program will create Complex

objects, perform the addition using the overloaded operator, and display the result. This

assignment covers operator overloading and custom behavior for operators, allowing students

to extend the functionality of existing operators to work with user-defined types.

Assignment 6: Inheritance with Function Overriding

Program Statement: Create a “Base class” Animal with a “Virtual function” sound().

Derive two classes Dog and Cat from Animal and override the sound() function in each

derived class. The program should:

1. Create objects of Dog and Cat.

2. Call the sound() function by a pointer to the “Base class”.

Solution Description: “Function overriding” allows a derived class to provide a definite

implementation of a function already defined in its base class. The Animal class will have a

virtual sound() function, which will be overridden in the Dog and Cat classes to provide

specific sounds. By using base class pointers to call the sound() function, the program will

demonstrate polymorphism. This assignment helps in understanding inheritance, function

overriding, and runtime polymorphism in C++.

Assignment 7: Implementing a Copy Constructor

Program Statement: Create a “class” Book with attributes title, author, and price.

Implement:

1. A “parameterized constructor” to initialize the attributes.

2. A copy constructor to create a copy of a Book object.

3. A function to display the book details.

Solution Description: A copy constructor is used to create a new object as a copy of an

existing object. The Book class will have attributes for the title, author, and price, and a

parameterized constructor to initialize them. The copy constructor will create a new Book

object with the same attribute values as an existing object. The display function will print the

details of the book. This assignment helps in understanding deep copying and the role of copy

constructors in C++.

Assignment 8: Implementing Dynamic Memory Allocation

Program Statement: Create a class Student with attributes name and marks. Implement:

1. A constructor to dynamically allocate memory for the name.

4

2. A destructor to deallocate the memory.

3. A function to display the student details.

Solution Description: Dynamic memory allocation involves allocating memory at runtime

using pointers. The Student class will have a constructor that allocates memory for the name

attribute and a destructor that deallocates this memory to prevent memory leaks. The display

function will output the student's details. This assignment helps in understanding dynamic

memory management, constructors, destructors, and the importance of resource management

in C++.

Assignment 9: Friend Function

Program Statement: Make a class Box with private attributes length, width, and height.

Implement:

1. A “constructor” to initialize the attributes.

2. A “friend function” to calculate and return the volume of the box.

3. A function to display the dimensions and volume of the box.

Solution Description: A “Friend function” is a non-member function that has access to the

private and protected member of a class. The Box class will have a constructor to initialize its

dimensions and a friend function to calculate the volume. The display function will print the

box's dimensions and volume. This assignment helps in understanding friend functions and

their use cases in C++.

Assignment 10: Template Class

Program Statement: Write a template class Array that can store elements of any data type.

Implement:

1. A constructor to initialize the array with a given size.

2. A function to add elements to the array.

3. A function to show the elements of the array.

Solution Description: Templates allow classes and functions to operate with generic types.

The Array template class will support any data type, provide flexibility and reusability. The

constructor will initialize the array with a specified size, the function to add elements will

store values in the array, and the display function will print all elements. This assignment

helps in understanding templates and their benefits in creating generic and reusable code in

C++.

5

Assignment 11: Implementing a Linked List

Program Statement: Create a class Linked List to represent a “singly linked list” of

integers. Implement:

1. A constructor to initialize an empty list.

2. A function to add a node at the end.

3. A function to cross out a node from the beginning.

4. A function to show the elements of the list.

Solution Description: The Linked List class will encapsulate the properties of a singly

linked list. The class will have a nested Node structure by an integer data field and a pointer

to the next node. The constructor will initialize an empty list. The add Node function will

add nodes to the end of the list, while the deleteNode function will remove the node at the

beginning. The display function will traverse and print the list elements. This assignment

reinforces concepts of dynamic memory allocation and pointer manipulation in C++.

Assignment 12: Implementing a Stack Using Class

Program Statement: Create a class Stack to represent a stack of integers. Implement:

1. A constructor to initialize an empty stack.

2. A function to push an element on the stack.

3. A function to pop an element from the stack.

4. A function to show the elements of the stack.

Solution Description: The Stack class will use an array or a linked list to store stack

elements. The constructor will initialize the stack, and the push function will insert elements

to the top. The pop function will remove the top element, and the “display function” will

print all elements from the top to the bottom. This assignment helps in understanding stack

operations and their implementation in C++.

Assignment 13: Implementing a Queue Using Class

Program Statement: Create a class Queue to represent a queue of integers. Implement:

1. A constructor to initialize an empty queue.

2. A function to enqueue an element on the end.

3. A function towards dequeue an element from the front.

4. A function to show the elements of the queue.

6

Solution Description: The Queue class will use an array or a linked list to manage queue

elements. The constructor will initialize the queue, and the enqueue function will add

elements to the end. The dequeue function will remove elements from the front, and the

display function will print all elements from the front to the end. This assignment covers the

concept of queue operations and their implementation in C++.

Assignment 14: Implementing Polymorphism

Program Statement: Create a “Base class” Vehicle with a “virtual function” display().

Derive two classes Car as well as Bike from Vehicle. Override the display() function in each

derived class. The program should:

1. Create objects of Car and Bike.

2. Call the display() function using a pointer towards the base class.

Solution Description: Polymorphism allows methods to be used interchangeably based on

the object type at runtime. The Vehicle class will have a virtual display() function, which will

be overridden in the Car and Bike classes to provide specific implementations. The program

will use base class pointers to demonstrate polymorphism by calling the display() function on

Car and Bike objects. This assignment helps understand runtime polymorphism and dynamic

binding in C++.

Assignment 15: Implementing Abstract Classes

Program Statement: Create an abstract “Base class” Employee with a pure virtual function

calculateSalary(). Derive 2 classes FullTimeEmployee and PartTimeEmployee from

Employee. Implement:

1. The calculateSalary() function in each derived class.

2. A function to display the salary details.

Solution Description: Abstract classes cannot be instantiated and are used to define

interfaces for derived classes. The Employee class will have a pure virtual calculateSalary()

function, making it abstract. The FullTimeEmployee and PartTimeEmployee classes will

provide concrete implementations of the calculateSalary() function. The display function

will print the salary details. This assignment helps understand abstract classes, pure virtual

functions, and their role in defining interfaces in C++.

Assignment 16: Implementing a Template Function

Program Statement: Create a template “Function” findMax to find the supreme of two

elements. The program should:

7

1. Use the findMax function with different data types (int, float, char).

2. Display the results.

Solution Description: Template functions allow a function to operate with generic types. The

findMax function will compare two elements of any data type and return the maximum. The

program will demonstrate the function with different data types, showcasing its versatility

and reusability. This assignment helps understand the concept of templates and their benefits

in creating generic functions in C++.

Assignment 17: Exception Handling

Program Statement: Create a C++ program to demonstrate exception handling. The

program should:

1. Implement a function that performs division of two numbers.

2. Throw an exception if the divisor is zero.

3. Catch the exception and display an appropriate error message.

Solution Description: Exception handling allows a program to handle runtime errors

gracefully. The division function will throw an exception if an attempt is made to divide by

zero. The program will catch the exception and display an error message, preventing the

program from crashing. This assignment helps in understanding the try, catch, and throw

mechanisms in C++ for robust error handling.

Assignment 18: Implementing Copy Constructor and Assignment Operator

Program Statement: Create a class String to represent a dynamic string. Implement:

1. A parameterized constructor to initialize the string.

2. A copy constructor to create a copy of a String object.

3. An overloaded assignment operator to assign one String object to another.

4. A function to display the string.

Solution Description: The String class will manage a dynamically allocated character array.

The copy constructor will ensure a deep copy of the string, and the assignment operator will

handle assignment between objects, preventing memory leaks. The display function will print

the string. This assignment covers dynamic memory management, copy constructors, and

assignment operators in C++.

8

Assignment 19: Implementing Static Members

Program Statement: Create a class Counter with a static data member to keep pathway of

the number of objects created. Implement:

1. A constructor to increment the counter.

2. A static member function to display the count of objects created.

Solution Description: Static members are joint among all objects of a class. The Counter

class will have a static data member to count the number of objects. The constructor will

increment this counter, and the static member function will display the count. This

assignment helps in understanding static data members and functions, and their shared nature

across all instances of a class in C++.

Assignment 20: File Handling

Program Statement: Create a class File Handler to perform basic file operations.

Implement:

1. A function to write data to a file.

2. A function to read data from the file and display it.

Solution Description: File handling allows programs to read from and write to files. The

FileHandler class will use file streams to perform these operations. The write function will

output data to a file, and the read function will input data from the file and display it. This

assignment helps in understanding file I/O operations and their implementation using file

streams in C++.

Assignment 21:

9

10

Assignment 22:

//End of class Factorial

11

 Assignment 23:

12

Assignment 24:

13

Assignment 25:

14

Assignment 26:

15

Assignment 27:

16

17

 }

}

OUTPUT:

18

Assignment 28:

19

20

21

 .

22

23

	7a40d76d6dff5968b17a7d8fd76d4cc96654d1e28b5681a80e98f65b0510b8de.pdf
	a51a66516fb6e79a5f9b76ea38b8d47210c6ee54068006e4d0898607baf36255.pdf
	7a40d76d6dff5968b17a7d8fd76d4cc96654d1e28b5681a80e98f65b0510b8de.pdf

